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1 BACKGROUND

• When situational demands exceed available 
cognitive resources, people experience 
cognitive overload that often leads to 
erroneous behavior [1, 2, 3]. 

• In naturalistic scenarios, people are confronted 
with various situational and environmental 
distractions that may impede the maintenance 
of goal-directed behavior [4]. 

• To prevent incidents in safety critical contexts, 
closed-loop systems should adapt flexibly to 
users’ current cognitive resources. 

• Therefore, robust, non-intrusive real-time 
measures of cognitive load as well as suitable 
classification procedures must be elaborated 
in ecologically valid experimental settings.

RESULTS3
• We observed substantial between-subject 

variation in the classifiers’ performances and 
in the weighting of the different modalities.

• The choice of the ground truth affected the 
classifiers’ performances substantially:
1) Subjectively perceived load: We could not 

reliably predict the subjectively perceived 
cognitive load for any modality neither by a 
unimodal combination of classifiers nor in a 
multimodal approach (recall: 40.6%, 
precision: 38.3%).

2) Task load: The classification of the 
experimentally induced task load was 
significantly above chance level for all 
modalities with high average performances.

The multimodal voting classifier could also 
predict task load with an average recall of 
82.7% and precision of 58.7%.

Ocular activity was weighted highest for the 
multimodal prediction. Soft voting was used 
more often than hard voting to combine the 
different modalities.

METHODS2
• We conducted a multimodal study with 18 

participants (9 female, mean age = 25.9 ± 3.8 
years, range = 21 - 35).

• Participants performed an adapted version of 
the warship commander task (WCT) [5] with 
concurrent emotional speech distractions 
taken from the Berlin Database of Emotional 
Speech (Emo-DB) [6].

• Participants’ current cognitive load (high vs. 
low) was operationalized as
1) Subjectively perceived load (based on self-

reports acquired with the Nasa TLX effort 
subscale [7])

2) Task load (induced by different levels of 
difficulty in the experimental conditions).

• We recorded brain activity (fNIRS), 
physiological activity (heart rate, respiration, 
and body temperature), and ocular activity 
(pupil dilation and fixations). 

• Aggregated features were then fed into a 
multilevel data fusion and classification 
architecture comprising unimodal and 
multimodal combinations of classifiers.

• To evaluate the models’ performances, we 
computed the average F1 score with each 
subject serving as test set once (cross-subject 
leave-one-out classification).

DISCUSSION & CONCLUSION4
• Our proposed multimodal classification 

approach contributes to the development of 
ecologically valid monitoring systems of 
cognitive load across individuals.

• We provide insights into characteristics of 
different data fusion and classification 
strategies that allow researchers and 
practitioners to select appropriate methods. 

• Deviations between the two ground truth 
approaches might be explained by the 
retrospective nature of self-reports. Because 
they depend on the individual’s perception, 
reasoning, and unverifiable introspection they 
are vulnerable to various perceptual and 
response biases as well as automatic 
evaluation processes .[8, 9]

• Our results further highlight the need for 
suitable methods 
a) to identify “odd” subjects who are 

potentially difficult to predict due to their 
heterogeneity compared to the training set,

b) to facilitate transfer learning for these 
individuals and generalizability of the 
models.
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